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ABSTRACT:

The article  discusses a  method for  classifying land cover  types in  rural areas using a trained neural  network.  The focus is on
distinguishing agriculturally cultivated areas and differentiating bare soil from quarry areas. This distinction is not present in publicly
available databases like CORINE, UrbanAtlas, EuroSAT, or BigEarthNet. The research involves training a neural network on multi-
temporal patches to classify Sentinel-2 images rapidly. This approach allows automated monitoring of cultivated areas, determining
periods of bare soil vulnerability to erosion, and identifying open-pit areas with similar spectral characteristics to bare soil. After
training the U-Net network, it achieved an average classification accuracy of 90% (OA) in the test areas, highlighting the importance
of  using OA for  multi-class classifications,  instead of  ACC.  Analysis of  our main  classes revealed high accuracy,  99.01% for
quarries, 92.3% for bare soil, and an average of 94.8% for annual crops, demonstrating the model's capability to differentiate between
crops at various growth stages and assess land cover categories effectively. 

1 INTRODUCTION

The article's topic concerns a universal method for classifying
land cover  types in rural areas.  The idea is to train a neural
network in such a way that it can perform classification (without
training fields) of any Sentinel-2 image in any area to identify
basic land cover types and land use forms. It  is necessary to
specify  what  this  means.  Some classes are  the  same in  both
urban  and  rural  areas:  buildings,  industrial  areas  (including
resource  exploitation  such  as  quarries  and  open-pit  mines),
roads,  water  bodies,  permanent  green  areas,  and  forests.
However, in rural areas, the focus is primarily on agriculturally
cultivated areas. Depending on the season, plant phenology, or
agrotechnical practices,  the same surface may be bare soil  or
covered with vegetation at various stages of development. The
novelty of our research lies in the detailed analysis of this group
of  land  use  types.  We  placed  the  main  emphasis  on
distinguishing  cultivated  areas  (classes  4,  5,  and  9)  and
distinguishing  bare soils (5) from quarry areas (10):

1. Coniferous forest
2. Mixed forest
3. Built-up areas, industrial areas
4. Crops: mature cereals (pre-harvest) or in spring before

agricultural operations
5. Bare soil
6. Permanent grasslands
7. Roads
8. Water bodies
9. Crops: in the phase of  vegetation growth
10. Quarry areas

Such  a  distinction  of  agriculturally  cultivated  areas  is  not
present  in  publicly  available  databases  such  as  CORINE,
UrbanAtlas  covering  many  countries,  and  local  ones  like
S2GLC  Global  Land  Cover  -  Sentinel  2 and  POLSA  Land
Cover  Classification.  Intensive  research  is  currently  being
conducted on various neural network models and the creation of
benchmarks for land use and land cover classification (LULC).
Examples  of  this  research  can  be  seen  in  EuroSAT and  the
BigEarthNet  Sentinel-2  Multispectral  Dataset  (Helber  et.  al,
219,  Zhang et. al., 2023). Both datasets consist of the same set

of 10 classes, and it's worth noting that the 'annual crops' class
is also excluded. Consequently, they cannot be utilized for the
purposes defined above. 
On  the  other  hand,  detailed  monitoring  of  vegetation
development at the crop level is carried out for the purpose of
direct agricultural subsidies control, e.g. in Poland AMS (Area
Monitoring System).
In our research,  we have adopted some classes that are more
generalized  compared  to  CORINE,  UrbanAtlas,  EuroSAT  or
BigEarthNet and more  detailed  classes related to  agricultural
areas. However, these classes are not as detailed as needed for
IACS (Integrated Administration and Control System) purposes.
In this case, the goal is the detailed classification of cultivated
plants, which also makes it impossible to use training data from
this system (e.g., LPIS  Land Parcel Identification System) for
our purpose. 
In  our  research,  we  trained  a  neural  network  on  individual
multi-temporal  patches  for  the  purpose  of  later  using  it  to
classify any single Sentinel-2 image. This approach allows for
rapid  and  automated  monitoring  of  agriculturally  cultivated
areas  to  determine  the  duration  of  periods  when  the  soil  is
barren  of  vegetation  and  vulnerable  to  water  erosion.
Additionally,  it  is  possible  to  monitor  open-pit  areas  with
spectral characteristics similar to bare soil during this process. 

2 DATA AND METHODS

The test  area was selected in southern Poland because of  its
fragmented land cover  structure,  where  agricultural  plots  are
mostly  small,  posing  a  challenge  when  utilizing  Sentinel-2
images. Three test areas were chosen: Kolbuszowa, Strzegom,
and Kraków, each with a different character.

1. Kolbuszowa covers a predominantly rural area with a high
number of very small plots, often with a surface area below 0.5
hectares, and many of them have elongated shapes.

2. Strzegom is an area used for both agriculture and industry,
with a significant presence of open-pit mining activities.

3. Due to the limited number of built-up areas in the first two
patches, an additional area, Kraków, was selected. Kraków was
used to represent various types of urban development.
These diverse test areas allow for a comprehensive evaluation
of the neural network's performance across different land cover
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and  land  use  scenarios,  ranging  from  rural  agricultural
landscapes to industrial and urban areas.

Figure 1. Test areas

The  network  training  utilized  Sentinel-2  data  from  various
vegetative periods,  spanning from March to September 2021-
2022.  This  multi-temporal  dataset  likely  allows  the  neural
network to capture changes in land cover and vegetation over
time,  which  can  be  valuable  for  tasks  such  as  land  cover
classification,  monitoring  agricultural  cycles,  and  assessing
changes in the landscape throughout the growing season:

• strzegom_20210619
strzegom_20220619
strzegom_20220719
strzegom_20221012
strzegom_20230209
strzegom_20230301

• kolbuszowa_20210327
kolbuszowa_20210411
kolbuszowa_20210509
kolbuszowa_20210728
kolbuszowa_20210906

• krakow_20220603
krakow_20220603
krakow_20220603

Testing was conducted on two patches: 
• strzegom_20230709
• kolbuszowa_20210725

Each image was downloaded from the ESA hub in version 2A
(after correction) and cropped to a patch size of 401x401 pixels.
Ten channels were selected (B2, B3, B4, B5, B6, B7, B8, B8A,
B11, B12), which were resampled to 10 meters and normalized
to a 0-1 range.   

Figure 2. FCC - strzegom_20220619

Figure 3. FCC  - strzegom_20220719

2.1 BENCHMARKS

The  class  patterns  were  vectorized  using  QGIS,  particularly
focusing on the false color compositions (FCC) of bands B8,
B4,  and  B3.  The  following  classes:  forest  (1,2),  permanent
grassland (6), and roads (9), were vectorized essentially once
because they remain relatively stable over short time periods.
A more detailed interpretation was applied to the classes related
to agricultural land use: crops in the mature cereals phase (pre-
harvest)  or  in  spring  before  agricultural  operations  (4)  –
appearing green on FCC,  bare soils  (6)  –  appearing cyan on
FCC,  and  crops  in  the  phase  of  vegetation  growth  (9)  –
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appearing red on FCC. The classes quarry areas (10) and water
(8) were also verified on each composition.
Ultimately,  you  obtained  16  vector  layers  containing  class
patterns, with 14 for training and 2 for testing. These benchmark
layers were then converted into a raster model, resulting in 16
raster  masks where pixel  values range from 1 to 9.  The "no
data" value was assigned to the background, while class values
corresponded to land cover and land use types.

2.2 METHODS

Based  on  the  publications  (Selea  2023,  Xu  et  al.  2023,
Onojeghuo et al. 2023), the U-Net network model was selected,
and its architecture is shown in Figure 5.1.  The network was
implemented  using  the  PyTorch  framework  and  the  Python
programming language.  The  basic  convolution  operation was
designed as a block consisting of three layers:

• Convolution layer: Conv2d, kernel_size=3, stride=1,
padding='same', bias=False

• Normalization layer: BatchNorm2d
• Activation layer: ReLU

At each level of the network (as shown in Figure 1), the image
passes through the convolution block three times. Each passage
through the block changes the number of image channels - it
increases in the first part and decreases in the second part. After
each convolution block, there is a double change in the size of
the image (height and width): in the first part of the network, the
image is downscaled (MaxPool2d), and in the second part, it is
upscaled (ConvTranspose2d). All operations performed on the
data  by  the  U-Net  model  are  provided  as  functions  by  the
PyTorch framework.

Figure  4.  Sample plots of loss function values and accuracy.
Hyperparameter testing for learning rate and weight
decay. 

The trained network was used for the classification of  2  test
images. Accuracy analysis was conducted in QGIS using both
pixel-based and object-based approaches.
Pixel-Based Approach:

1. Load the classified images into QGIS.
2. Utilize map algebra to subtract the benchmark mask

from the classified images.
3. Calculate the accuracy metric, overall accuracy (OA),

using the formula: OA = sum(pixels=0) / sum(pixels
<> 0). This formula calculates the ratio of correctly
classified pixels (pixels with a value of 0) to all non-
background pixels.

Object-Based Approach:
1. Assign an attribute to each polygon in the benchmark

mask,  selecting  a  statistic  such  as  the  majority,
computed  from  all  pixels  contained  within  that
polygon.

2. Calculate the differences between the attribute value
in  the  mask  and  the  majority  value  from  the
classification result.

3. In  this  case,  OA  is  calculated  as  the  number  of
correctly  classified  polygons  divided  by  the  total
number of polygons.

These  methods  allow  for  the  assessment  of  classification
accuracy  in  both  a  pixel-based  and  object-based  manner,
providing insights into how well the classification aligns with
the benchmark data.

Figure 5. UNet scheme

A comprehensive accuracy analysis can be conducted based on
the  so-called  confusion  matrix,  which  contains  all  the
information  regarding  errors,  including  underestimation  and
overestimation  errors.  In  machine  learning,  terminology  may
not  be  entirely  appropriate  for  assessing  multi-class
classification.  Specifically,  these  terms  correspond  to  binary
classification, as commonly used in medical test evaluation: true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN).  However,  due to the widespread use of  these
metrics in our research, we have calculated all of them using
own scripts in Python. 

Name Formula

Producer accuracy (PA)
Sensitivity
True positive rate (TPR)

              
TP

TP+FN

Specificity
True negative rate (TNR)               

TN
TN+FP

User accuracy (UA)
Precision
Positive predictive value (PPV)

               
TP

TP+FP
Accuracy (ACC)

       
TP+TN

TP+TN+FP+FN
F1 score

           
2TP

2TP+FP+FN
Overall accuracy (OA)
Percent of correct precision ∑

i=1

n

TP i

∑
i=1

n

(TP i+TN i+FPi+FN i )

Table 1.  Accuracy metrics
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3 RESULTS

The  false  color  composite  (FCC)  compositions  of  the  test
images are shown in Figures 6 and Figure 8, and the results of
the classification of the test images are presented in Figures 7
and  Figure  8.  In  Figure  7,  class  6  (permanent  grassland)  is
missing, and in Figure 9, class 10 (Quarry areas) is missing. 
In both test areas, the classification accuracy in the pixel-based
approach was higher than in the object-based approach. Slightly
higher accuracy was achieved for the Strzegom area. 
The confusion matrices and other accuracy metrics for both test
areas  and both approaches are  provided in  Tables  3  through
Figure 10.

Figure 6. FCC  - strzegom_20230709

Figure 8. FCC  - kolbuszowa_20210725

The summary average metric values in the classes can be found
in Table 12. Notably, the average values of the commonly used
machine learning metric ACC, often mistakenly reported as OA
(Overall  Accuracy),  are  worth  mentioning,  as  they  can
artificially inflate the classification accuracy. 

piksel object
kolbuszowa_20210725 93.1 86.5

strzegom_20230709 94.6 89.0

Table 2. OA for test images

Figure 7. Classification result  - strzegom_20230709

Figure 9. Classification result  - kolbuszowa_20210725
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ground true

ID 1 2 3 4 5 6 7 8 9 10

1 1202 0 6 47 0 0 1 0 0 0

2 549 7237 0 124 0 0 2 2 114 3

3 0 0 625 0 35 0 14 0 2 0

4 2 0 14 7341 0 0 17 0 15 7

5 0 0 0 6 1150 0 0 0 0 0

6 0 0 2 11 0 0 4 0 0 0

7 0 0 8 6 0 0 59 0 11 0

8 0 1 0 30 0 0 0 635 0 6

9 0 14 25 1717 0 0 67 0 9744 0

10 0 9 0 2 89 0 0 4 0 6998
Table 3.   Strzegom, confusion matrix, pixel approach

ground true

ID 1 2 3 4 5 6 7 8 9 10

1 5 0 0 0 0 0 0 0 0 0

2 2 21 1 1 0 0 0 0 0 0

3 0 0 43 0 0 0 2 0 0 0

4 0 0 1 45 0 0 2 0 0 0

5 0 0 0 0 4 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 2 0 0 0 4 0 0 0

8 0 0 0 0 0 0 0 13 0 0

9 0 1 0 2 0 0 6 0 21 0

10 0 0 0 0 1 0 0 0 0 14
Table 4. Strzegom, confusion matrix, object approach 

TPR/PA TNR PPV/UA ACC F1

1 68.57 99.85 95.47 98.42 79.81

2 98.89 97.17 89.62 97.51 94.02

3 81.91 99.81 89.54 99.45 85.56

4 91.06 99.34 97.33 97.61 94.1

5 81.73 99.98 99.48 99.32 89.74

6 99.96 0 99.96

7 35.98 99.93 70.24 99.66 47.58

8 99.06 99.9 94.49 99.89 96.73

9 98.14 97.56 94.22 97.73 96.14

10 99.76 99.61 98.27 99.64 99.01
Table 5. Strzegom, accuracy metrics, pixel approach

ID TPR/PA TNR PPV/UA ACC F1

1 71.43 100 100 98.95 83.33

2 95.45 97.63 84 97.38 89.36

3 91.49 98.61 95.56 96.86 93.48

4 93.75 97.9 93.75 96.86 93.75

5 80 100 100 99.48 88.89

6

7 28.57 98.87 66.67 93.72 40

8 100 100 100 100 100

9 100 94.71 70 95.29 82.35

10 100 99.44 93.33 99.48 96.55

Table 6. Strzegom, accuracy metrics, object approach

ground true

ID 1 2 3 4 5 6 7 8 9 10

1 1105 7 0 1 0 0 0 0 0 0

2 42 1591 1 9 6 0 0 0 0 0

3 2 0 324 22 4 0 23 0 0 0

4 0 0 9 2813 45 11 65 0 3 0

5 0 0 6 72 1221 2 2 0 0 0

6 10 102 18 4 5 530 0 0 1 0

7 0 0 12 3 6 0 105 0 0 0

8 0 0 1 0 0 0 1 21 0 0

9 15 5 11 21 0 105 0 0 1105 0

10 0 0 0 0 0 0 0 0 0 0
Table 7. Kolbuszowa, confusion matrix, pixel approach

ground true

ID 1 2 3 4 5 6 7 8 9 10

1 9 1 0 0 0 0 0 0 0 0
2 0 16 1 0 0 0 0 0 0 0
3 0 0 31 1 0 0 2 0 0 0
4 0 0 1 48 3 0 1 0 0 0
5 0 0 0 3 25 0 2 0 0 0
6 1 1 0 0 0 20 0 0 0 0
7 0 0 3 0 1 0 6 0 0 0
8 0 0 0 0 0 0 0 1 0 0
9 1 0 0 0 0 5 0 0 15 0
10 0 0 0 0 0 0 0 0 0 0

Table 8. Kolbuszowa, confusion matrix, object approach 

TPR/PA TNR PPV/UA ACC F1

1 94.12 99.9 99.28 99.19 96.63

2 93.31 99.25 96.48 98.18 94.87

3 84.82 99.44 86.4 98.85 85.6

4 95.52 97.96 95.49 97.2 95.5

5 94.87 99 93.71 98.44 94.29

6 81.79 98.41 79.1 97.27 80.42

7 53.57 99.77 83.33 98.82 65.22

8 100 99.98 91.3 99.98 95.45

9 99.64 98.12 87.56 98.3 93.21

10
Table 9. Kolbuszowa, accuracy metrics, pixel approach

ID TPR/PA TNR PPV/UA ACC F1

1 81.82 99.47 90 98.48 85.71

2 88.89 99.44 94.12 98.48 91.43

3 86.11 98.15 91.18 95.96 88.57

4 92.31 96.58 90.57 95.45 91.43

5 86.21 97.04 83.33 95.45 84.75

6 80 98.84 90.91 96.46 85.11

7 54.55 97.86 60 95.45 57.14

8 100 100 100 100 100

9 100 96.72 71.43 96.97 83.33

10

Table 10.  Kolbuszowa, accuracy metrics, object approach
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TPR/PA TRN PPV/UA ACC F1

1 83.9 99.31 82.87 98.92 86.97

2 84.52 98.57 89.26 97.56 85.30

3 88.63 99.09 90.29 98.47 89.02

4 85.54 98.23 85.73 96.97 85.27
Table 12. Accuracy metrics – summary, 1 – Strzegom, pixel

approach,  2  –  Strzegom,  object  approach,  3  –
Kolbuszowa,  pixel  approach,  4  –  Kolbuszowa,
object approach

4 CONCLUSIONS

During the research, the analysis focused on LULC classes in
agricultural areas, with a particular emphasis on distinguishing
between areas used as annual crops and areas with industrial
activity  (quarry  areas).  After  training the  U-Net  network,  an
average classification accuracy of OA = 90% was achieved on
the  test  areas.  It  is  important  to  emphasize  that  instead  of
reporting ACC (average accuracy), which can give the illusion
of significantly higher accuracy (e.g.,  Zhang et.  al.  2023) one
should use OA. In our case,  we could report an accuracy of
98%,  which  is  8%  higher  than  OA.  Similarly,  it  is  not
recommended to use the metric TRN (specificity) for the same
reason  (Hejmanowska  et.  al.  2021).  Both  accuracy  and
specificity metrics are suitable for binary classifications but not
appropriate for multi-class classifications. 
Regarding the specific classes 4, 5, 9, and 10, you can analyze
the "remote sensing" metrics of PA (Producer's Accuracy) and
UA (User's Accuracy) in Tables 5 and 9:
    • The classification accuracy for class 10 (quarry area) is on
average 99.01%.
    • The classification accuracy for the very similar class, bare
soil, is 92.3%.
    • The classification accuracy for areas covered by annual
crops, classes 4 and 9, is on average 94.8%.
This level of accuracy metrics the ability to distinguish between
such crops in various growth stages (vegetation phase or resting
state) or just before harvesting. These remote sensing metrics
help assess the model's performance in correctly identifying and
classifying specific land cover categories, including areas with
different agricultural practices and land use.
Similar research was conducted by Yailymova et al. in 2022 in
order  to  detect  illegal  dumpsites,  reporting  accuracy  metrics
kappa =  91%. A Sentinel-2 based multispectral convolutional
neural network for detecting artisanal small-scale mining was
researched (Gallwey et. al. 2020) with OAmax = 96%.  On the
other hand, multi-temporal analyses of marble quarry expansion
allowed us to achieve an OAmax of 93.13% (Tercan and Dereli
2021). Interesting comparisons of various cases studies can be
found in publications (Ang et. al. 2023, Chen et. al. 2018,  De
Fioravante et. al. 2021).

REFERENCES

Ang, M. L. E., Owen, J. R., Gibbins, C. N., Lèbre, É., Kemp,
D., Saputra, M. R. U., Everingham, J.-A., & Lechner, A. M.,
2023.  Systematic  Review  of  GIS  and  Remote  Sensing
Applications  for  Assessing  the  Socioeconomic  Impacts  of
Mining.  The  Journal  of  Environment  & Development, 32(3),
243-273. https://doi.org/10.1177/10704965231190126

Chen, W.; Li, X.; He, H.; Wang, L., 2018: A Review of Fine-
Scale  Land  Use  and  Land  Cover  Classification  in  Open-Pit
Mining  Areas by  Remote  Sensing Techniques.  Remote  Sens.
10, 15. https://doi.org/10.3390/rs10010015

De Fioravante, P., Luti, T., Cavalli, A., Giuliani, C., Dichicco,
P.,  Marchetti,  M.,  Chirici,  G.,  Congedo,  L.,  Munafò,  M.
Multispectral  Sentinel-2  and  SAR  Sentinel-1  Integration  for
Automatic  Land  Cover  Classification.  Land  2021,  10,  611.
https://doi.org/10.3390/land10060611

Gallwey J., Robiati  C., Coggan J., Vogt  D., Eyre M.,  2020: A
Sentinel-2 based multispectral convolutional neural network for
detecting artisanal small-scale mining in Ghana: Applying deep
learning to  shallow mining,  Remote  Sensing  of  Environment,
Volume 248, 2020, 111970, ISSN 0034-4257,

Helber P., Bischke B., Dengel A., Borth D., 2019: Eurosat: A
Novel Dataset and Deep Learning Benchmark for Land Use and
Land Cover Classification, IEEE J. Sel. Top. Appl. Earth Obs.
Remote  Sens.,  12  (7)  (2019),  pp.  2217-2226,
10.1109/JSTARS.2019.2918242 

Hejmanowska  B.,  Kramarczyk  P.,  Głowienka  E.,  Mikrut  S.,
2021: Reliable Crops Classification Using Limited Number of
Sentinel-2  and  Sentinel-1  Images. Remote  Sensing. 2021;
13(16):3176. https://doi.org/10.3390/rs13163176 

Onojeghuo A. O., Miao Y., Blackburn G. A., 2023:  Deep Resu-
Net  Convolutional  Neural  Networks  Segmentation  for
Smallholder  Paddy  Rice  Mapping  Using Sentinel 1  SAR and
Sentinel 2 Optical Imagery. Remote Sens., 15(6)

Selea T., 2023: AgriSen-COG, a Multicountry,  Multitemporal
Large-Scale Sentinel-2 Benchmark Dataset for Crop Mapping
Using Deep Learning. Remote Sens., 15(12)

Tercan, E., Dereli, M.A., 2021: Monitoring of marble quarries
expansion and land cover  changes using satellite images and
GIS on a rural settlement of Burdur province, Turkey. El-Cezerî
Journal of Science and Engineering, 2021, 8 (2); 741-750. 

Xu Y., Xue X., Sun Z., Gu W., Cui L., Jin Y., Lan Y., 2023:
Deriving  agricultural  field  boundaries  for  crop  management
from satellite images using semantic feature pyramid network.
Remote Sens., 15(11).

Yailymova  H.,  Mikava  P.,   Kussul  N.,  Krasilnikova  T.,
Shelestov A., Yailymov B., Titkov D., 2022: Neural Network
Model for Monitoring of Landfills Using Remote Sensing Data.
IEEE  3rd  International  Conference  on  System  Analysis  &
Intelligent  Computing  (SAIC), Kyiv,  Ukraine,  2022,  pp.  1-4,
doi: 10.1109/SAIC57818.2022.9923013.

Zhang P., Wu, Y., Li C., Li R., Yao H., Zhang, Y., Zhang, G.,
Li, D., 2023: National-Standards- and Deep-Learning-Oriented
Raster  and  Vector  Benchmark  Dataset  (RVBD)  for
Land-Use/Land-Cover  Mapping  in  the  Yangtze  River  Basin.
Remote  Sens. 2023,  15,  3907.
https://doi.org/10.3390/rs15153907 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W3-2023 
2nd GEOBENCH Workshop on Evaluation and BENCHmarking of Sensors, Systems and GEOspatial Data 

in Photogrammetry and Remote Sensing, 23–24 October 2023, Krakow, Poland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-85-2023 | © Author(s) 2023. CC BY 4.0 License.

 
90

https://doi.org/10.3390/land10060611
https://doi.org/10.1177/10704965231190126

	1 introduction
	2 Data and methods
	2.1 benchmarks
	2.2 methods

	3 results
	4 conclusions
	References



