
Zezwala się na korzystanie z artykułu na warunkach 
licencji Creative Commons Uznanie autorstwa 3.0

1. Introduction

Igor V. Girsanov, was one of the first mathematicians to study 
general extremum problems and to realize the feasibility and 
desirability of a unified theory of extremal problems, based on 
a functional–analytic approach. His book [2] was apparently 
the first systematic exposition of a unified approach to the 
theory of extremal problems. This approach was based on the 
ideas of Dubovicki and Milyutin concerning extremum pro-
blems in the presence of constraints. Dubovicki and Milyutin 
found a necessary condition for an extremum in the form of 
an equation set down in the language of functional analysis.

For instance, in the paper [3], the Dubovicki-Milyutin 
method was applied for solving optimal control problems for 
parabolic-hyperbolic systems. The existence and uniqueness of 
solutions of such parabolic-hyperbolic systems with the Diri-
chlet boundary conditions are discussed. Making use of the 
Dubovicki-Milyutin method necessary and sufficient conditions 
of optimality for the Dirichlet problem with the quadratic 
performance functional and constrained control are derived. 

In the papers [4–9], the Dubovicki-Milyutin method was 
applied for solving boundary optimal control problems for the 
case of time lag parabolic equations [4] and for the case of 
parabolic equations involving time-varying lags [5–7], multiple 
time-varying lags [8], and integral time lags [9] respectively. 
Sufficient conditions for the existence of a unique solution of 
such parabolic equations [4–9] are presented.
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Consequently, in the papers [4–9], the linear quadratic pro-
blems of parabolic systems with time lags given in various 
forms (constant time lags [4], time-varying lags [5–7], multiple 
time-varying lags [8], integral time lags [9] etc.) were solved.

In the papers [12–15] the linear quadratic problems of opti-
mal boundary control for hyperbolic systems with constant 
time delays [12], multiple constant time delays [13], time-vary-
ing delays [14] and multiple time-varying delays [15] are inve-
stigated.

Sufficient conditions for the existence of a unique solution of 
such hyperbolic equations with the Neumann boundary condi-
tions [12–15] are presented. Making use of Dubovicki-Milyutin 
method [6], necessary and sufficient conditions of optimality 
with the quadratic cost functions and constrained boundary 
control are derived for the Neumann problem.

Extremal problems for integral time lag hyperbolic systems 
are investigated. The purpose of this paper is to show the use 
of Dubovicki-Milyutin theorem [6] in solving optimal control 
problems for hyperbolic systems.

As an example, an optimal boundary control problem for 
a system described by a linear partial differential equation of 
hyperbolic type in which integral time lags appear in the Neu-
mann boundary condition is considered.

Equations (1)–(5) constitute, in a linear approximation, 
a universal mathematical model for many processes in which 
transmission signals at a certain distance with electric, hydrau-
lic and other long lines take place.

In the processes mentioned above time-delayed feedback 
signals are introduced at the boundary of a system’s spatial 
domain. Then the signal at the boundary of a system’s spatial 
domain at any time depends on the signal emitted earlier. This 
leads to the boundary conditions involving integral time lags.

Sufficient conditions for the existence of a unique solution 
of such hyperbolic equation with the Neumann boundary con-
dition are presented.

The performance functionals have the quadratic form. The 
time horizon is fixed. Finally, we impose some constraints on 
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the boundary control. Making use of the Dubovicki-Milyutin 
theorem [6], necessary and sufficient conditions of optimality 
with the quadratic performance functionals and constrained 
control are derived for the Neumann problem.

2. Preliminaries

Consider now the distributed-parameter system described by 
the following hyperbolic equation
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∂
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	 ( ) ( ) )0, , , ,0y x t x t x t b′ ′ ′= Ψ ∈ Γ ∈ −  	 (5)

where: RnΩ∈  – a bounded, open set with boundary Γ  which 
is a C∞ – manifold of dimension (n − 1). Locally, Ω  is totally 
on one side of .Γ
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h is a time lag such that ( ),h a b∈  and a > 0, 0Ψ  is an ini-
tial function defined on 0,Σ  G is a linear continuous operator 
on ( )2L Σ  into

The hyperbolic operator ( )
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 in the state equation (1)  
 
satisfies the hypothesis of Section 1, Chapter 4 ([17], Vol. 2, 
p.  2) and A(t) is given by
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and the functions aij(x,t) satisfy the condition

	
	 	 (7)

where aij(x,t) are real C∞ functions defined on Q  (closure 
of Q).

The equations (1)–(5) constitute a Neumann problem. 
Then the left-hand side of (4) is written in the form 
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where 
Aη
∂

∂
 is a normal derivative at ,Γ  directed towards the 

 
exterior of ,Ω  cos(n, xi) is an i-th direction cosine of n, n-being 
the normal at Γ  exterior to Ω  and 
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q x t y x t h dh Gv x t= − +∫  	 (9)

First we shall prove the existence of a unique solution of 
the mixed initial-boundary value problem (1)–(5) defined by 
transposition, i.e.

	
	 (10)

where 

	
( ) ( ) ( )2 1, , , 0 , 0L u f u q u y u y u′= + + −  	 (11)

and we denote by ( )1X Q  the space described by the solutions 
u of the following adjoint problem
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where: ( )1,2
0.0H QΦ ∈  = closure of 

 
in ( )1,2 .H Q

For this purpose, we define the following space ([17], Vol. 2, 
Chapter 5, p. 131)

	
	 (13)

where the spaces ( )1, 2H Q− −  and ( )3, 3 Q− −Ξ  are defined by (9.5) 
and (10.4) of Chapter 5 in ([17], Vol. 2) respectively. Under the 
norm of the graph  is a Hilbert space.

Then, the solution of (10) belongs to .

We shall restrict our considerations to the case where 
( )2 .v L∈ Σ  For simplicity, we shall introduce the following 

notations

	
( )( )1 , , , ,

df

j j j j jE j a ja Q E E= − = Ω× Σ = Γ ×

	 for j = 1, 2, …, K.

The existence of a unique solution of the mixed initial-boun-
dary value problem (1)–(5) on the cylinder Q can be proved 
using a constructive method, i.e. by first solving problem (10) 
in the subcylinder Q1, and in turn in Q2 etc., until the proce-
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dure cover the whole cylinder Q. In this way the solution in 
the previous step determines the next one.

Consequently, using the Theorem 10.1 of [17] (Vol. 2, 
p.  132) we can prove the following result.

Theorem 1  Let y1, y2, 0,Ψ  v and f be given, with

	 ( ) ( )3/2 5/2
1 2, ,y y− −∈ Ξ Ω ∈ Ξ Ω

( ) ( ) ( )5/2 5/2 2 3, 3
0 0 , , .H v L f Q− − − −Ψ ∈ Ξ Σ ∈ Σ ∈ Ξ

Then, there exists a unique solution  for the 
problem (1)–(5) defined by transposition (10). Moreover,  
( ) ( )3/2, ,y ja −• ∈ Ξ Ω  and ( ) ( )5/2,y ja −′ • ∈ Ξ Ω  for j = 1, ..., K.

The proof of the Theorem 1 can be find in [11].

We refer to Lions and Magenes ([17], Vol. 2) for the defi-
nition and properties on ( ),r sH Q  and  respectively. In 
the sequel, we shall fix ( )3, 3 .f Q− −∈ Ξ

3. 	Problem Formulation. Optimization 
Theorems

In this paper we shall consider the optimal boundary control 
problem i.e. ( )2 .v L∈ Σ

Let us denote by  the space of states and by 
( )2U L= Σ  the space of controls. The time horizon T is fixed 

in our problem.
The performance functional is given by

	
	 (14)

where 0iλ ≥  and 1 2 0,λ λ+ >  zd is a given element in 
( )1, 2 ,H Q− −  and N is a strictly positive linear operator on ( )2L Σ  

into ( )2 .L Σ

Finally, we assume the following constraints on the control:

	 adv U∈ 	 (15)

where Uad is a closed, convex set with non-empty interior, 
a subset of U.

Let y(x, t, v) denote the solution of (1)–(5) at (x, t) corre-
sponding to a given control .adv U∈  We note from the The-
orem 1 that for any adv U∈  the cost function (15) is well 
defined since

 	

The optimal control problem (1)–(5), (14), (15) will be 
solved as the optimization one in which the function v is the 
unknown function. Making use of Dubovicki-Milyutin theorem 
[10] we shall derive the necessary and sufficient conditions of 
optimality for the optimization problem (1)–(5), (14), (15).

The solution of the stated optimal control problem is equiv-
alent to seeking a pair  which 
satisfies the equation (1)–(5) and minimizing the performance 
functional (14) with the constraints on the control (15).

Theorem 2 The solution of the optimization problem (1)–(5), 
(14), (15) exists and it is unique with the assumptions men-
tioned above; the necessary and sufficient conditions of the 
optimality are characterized by the following system of partial 
differential equations and inequalities.

State equation

	 (16)

	 (17)

                   	 (18)

         	 (19)

	 (20)

Adjoint equations

	 (21)

	 (22)

	(23)

	 (24)

	 (25)

	 (26)

where 1Λ  is a canonical isomorphism of ( )1, 2H Q− −  onto 
( )1,2

0,0 .H Q

Maximum condition
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We can also notice that

	
( ) ( )
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i jA j
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xη =

∂ ∂
=

∂ ∂∑ 	 (28)

OUTLINE OF THE PROOF:
According to the Dubovicki-Milyutin theorem [6], we appro-
ximate the set representing the inequality constraints by the 
regular admissible cone, the equality constraint by the regular 
tangent cone and the performance functional by the regular 
improvement cone. 
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a) Analysis of the equality constraint

The set Q1 representing the equality constraint has the form 

	 	

(29)

We construct the regular tangent cone of the set Q1 using 
the Lusternik theorem (Theorem 9.1 [2]). For this purpose, we 
define the operator P in the form 

	

	 	

(30)

The operator P is the mapping from the space 
 

 into the space 
 

( ) ( ) ( ) ( ) ( )3, 3 3/2 5/2 5/2 5/2 5/2 5/2
0 .Q H H− − − − − − − −Ξ × Ξ Ω × Ξ Ω × Ξ Σ × Ξ Σ

The Fréchet differential of the operator P can be written 
in the following form: 

	

( ) ( ) ( ) ( )

( ) ( )
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∂ ′− − − ∂ 
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Really, 
2

2t
∂
∂

 (Theorem 2.8 [18]), A(t) (Theorem 2.1 [16]) and 
 

Aη
∂

∂
 (Theorem 2.3 [17]) are linear and bounded mappings.  

 
Using Theorem 1 [11], we can prove that P′  is the operator 
 
“one to one” from the space  onto the space 

Considering that the assumptions of the Lusternik’s theorem 
are fulfilled, we can write down the regular tangent cone for the 
set Q1 in a point (y0,v0) in the form

	
( )( ) ( ) ( ) ( )( )0 0 0 0

1, , , , , , 0RTC Q y v y v E P y v y v′= ∈ = 	 (32)

It is easy to notice that it is a subspace. Therefore, using 
Theorem 10.1 [2] we know the form of the functional belonging 
to the adjoint cone

	
( ) ( ) ( )( )0 0

1 1, 0 , , ,f y v y v RTC Q y v= ∀ ∈ 	 (33)

b) Analysis of the constraint on controls

The set Q2 = Y ×Uad representing the inequality constraints 
is a closed and convex one with non-empty interior in the 
space E.

Using Theorem 10.5 [2] we find the functional belonging 
to the adjoint regular admissible cone, i.e.

( ) ( )( )0 0
2 2, , ,f y v RAC Q y v

∗
 ∈   

We can note if E1, E2 are two linear topological spaces, then 
the adjoint space to E = E1×E2 has the form

( ){ }1 2 1 1 2 2, ; ,E f f f f E f E∗ ∗ ∗= = ∈ ∈

and
	 f(x) = f1(x1)+ f2(x2)

So we note the functional ( )2 ,f y v  as follows

	 ( ) ( ) ( )2 1 2,f y v f y f v′ ′= + 	 (34)

where:
( )1 0f y y Y′ = ∀ ∈  (Theorem 10.1 [2])
( )2f v′  is a support functional to the set Uad in a point v0 

(Theorem 10.5 [2]).

c) Analysis of the performance functional

Using Theorem 7.5 [2] we find the regular improvement cone 
of the performance functional (14)

	 ( )( ) ( ) ( ) ( ){ }0 0 0 0, , , , , , 0RFC I y v y v E I y v y v′= ∈ < 	 (35)

where: ( ) ( )0 0, ,I y v y v′  is the Fréchet differential of the perfor-
mance functional (14) and it can be written as

	
( ) ( ) ( ) ( )1, 2 2

0 0 0 0
0 1 0 2, , 2 , 2 ,d H Q L

I y v y v y z y Nv vλ λ λ λ
− − Σ

′ = − + 	

		  (36)

On the basis of Theorem 10.2 [2] we find the functional 
belonging to the adjoint regular improvement cone, which has 
the form

	
	

( ) ( ) ( )1, 2 2

0 0
3 0 1 0 2, , ,d H Q L
f y v y z y Nv vλ λ λ λ

− − Σ
= − − − 	 (37)

where: 0 0.λ >

d) Analysis of Euler-Lagrange’s equation

The Euler-Lagrange’s equation for our optimization problem 
has the form

	

3

1
0i

i
f

=

=∑ 	 (38)
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Let p(x, t) be the solution of (21)–(26) for (y0,v0). Then, p(v) 
is defined by transposition, i.e.

	
	 (39)

where

( ) ( ) ( )2 1, , 0 , 0 ,M y p Ap y p q p y p y′′ ′= + − − +

and y satisfies (1)–(5).

We observe that, for given zd and v, equations (21)–(26)  can 
be solved backward in time starting from t = T, i.e. first solving 
problem (21)–(26) in the subcylinder Q1, and in turn in Qk−1 
etc., until the procedure covers the whole cylinder Q. For this 
purpose, we may apply Theorem 1.

Lemma 1 Let the hypothesis of Theorem 1 be satisfied. Then, for 
given ( )1, 2 ,dz H Q− −∈ and any ( )2 ,v L∈ Σ  there exists a unique 
solution

	 ( ) ( ) ( )3,3 3,3p v H Q Q∈ ⊂ Ξ

to the problem (21)–(26) defined by transposition (39).

Next we denote by y the solution of ( ), 0P y v′ =  for any 
fixed .v  Then taking into account (33)–(34) and (37) we can 
express (38) in the form

	

	 	 (40)

We transform the first component of the right-hand side 
of (40) using the formulae (21)–(26). Then taking the scalar 
product of both sides of (21) by an element ( )y v  respec-
tively, we get

	

	 	

(41)

By using the equation (1), the first term on the right-hand 
side of (41) can be rewritten as

	 ( )

( ) ( )3, 3
3, 3

2

2, ,
H Q

H Q

yp p A t y
t − −

− −

∂
= −

∂
	 (42)

The second component on the right-hand side of (41) in view 
of Green’s formula can be expressed as

	

	 	

(43)

By using the boundary condition (4), the second term on 
the right-hand side of (43) can be written as

	

	

	 	

		
	

(44)

The last component in (43) may be written as

	 	

		  (45)

Substituting (44) and (45) into (43) and then (42) and (43) 
into (41) we obtain

	
		  (46)

Substituting (46) into (40) gives

	
( )

( )2
0

2 0 2 ,
L

f v G p Nv vλ λ∗

Σ
′ = + 	 (47)

Using the definition of the support functional [2] and divi- 
ding both sides of the obtained inequality by 0,λ  we finally get

	
	 (48)
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The last inequality is equivalent to the maximum condi-
tion (27).

The uniqueness of the optimal control follows from the 
strict convexity of the performance functional (14).

This last remark finishes the proof of Theorem 2.
One may also consider analogous optimal control problem 

with the performance functional

	
( ) ( ) ( ) ( ) ( )5/2 5/2 2

2
1 2

ˆ , | ,d H L
I y v y v z Nv vλ λ− −Σ Σ Ξ Σ Σ

= − + 	 (49)

where: dzΣ  is a given element in ( )5/2 5/2 ;H − −Ξ Σ  we assume that 
the space ( )5/2 5/2H − −Ξ Σ  is such that ( ) ( )5/2 5/2 .y v H − −

Σ
∈ Ξ Σ  

Then the solution of the formulated optimal control problem 
is equivalent to seeking a pair

that satisfies the equation (1)–(5) and minimizing the cost 
function (49) with the constraints on control (15).

We can prove the following theorem:

Theorem 3 The solution of the optimization problems (1)–(5), 
(49), (15) exists and it is unique with the assumptions men-
tioned above; the necessary and sufficient conditions of the 
optimality are characterized by the following system of partial 
differential equations and inequalities:

State equation (1)–(5),

Adjoint equations

		  (50)

		  (51)

		

		  (52)

		  (53)

	 (54)

	 (55)

where: 2Λ  is a canonical isomorphism of ( )5/2 5/2H − −Ξ Σ  into 
( )5/2 5/2 .H Ξ Σ

Maximum condition

	
	 (56)

Moreover, it can be proved the following result.

Lemma 2 Let the hypothesis of Theorem 1 be satisfied. Then, 
for given  and any ( )2 ,v L∈ Σ there exists 
a unique solution ( ) ( ) ( )3,3 3,3p v H Q Q∈ ⊂ Ξ  to the problem 
(50)–(55) defined by transposition (39).

The idea of the proof of the Theorem 3 is the same as in 
the case of the Theorem 2.

In the case of performance functionals (14) and (49) with 
1 0λ >  and 2 0,λ =  the optimal control problem reduces to 

the minimizing of the functional on a closed and convex sub-
set in a Hilbert space. Then, the optimization problem is 
equivalent to a quadratic programming one ([10, 11] which 
can be solved by the use of the well-known algorithms, e.g. 
Gilbert’s [1, 10, 11]).

4. Conclusions and Perspectives

The derived conditions of the optimality (Theorems 2 and  3) 
are original from the point of view of application of the 
Dubovicki-Milyutin theorem [6] in solving optimal boundary 
control problems for second order hyperbolic systems in which 
integral time lags appear in the Neumann boundary condi-
tions.

The existence and uniqueness of solutions for such hyper-
bolic systems are presented – Theorem 1. The optimal control 
is characterized by using the adjoint equations – Lemmas 1 
and 2. Necessary and sufficient conditions of optimality with 
the quadratic performance functionals (14) and (49) and con-
strained control (15) are derived for the Neumann problem 
(Theorems 2 and 3).

The proved optimization results (Theorems 2 and 3) con-
stitute a novelty of the paper with respect to the reference 
[11] concerning application of the Lions scheme [16] for solv-
ing linear quadratic hyperbolic problems of optimal control.

The proposed methodology based on the Dubovicki-
Milyutin scheme can be presented as a specific case study 
concerning hyperbolic problems described by partial differ-
ential equations of the hyperbolic type including time lags 
appeared in the integral form for the case ( )0,h b∈  both in 
the state equations and in the Neumann boundary conditions.

Another direction of research will be numerical examples 
concerning the determination of optimal control with con-
straints for integral time delay hyperbolic systems.

Appendix 
Apart from lumped delays, which lead to difference-diffe-
rential equations, control systems may incorporate so-called 
distributed delays. These delays occur in distributed para-
meter systems represented by partial differential equations. 
The majority of thermal processes, together with processes 
in which the signal is transmitted by long electric, hydrau-
lic or pneumatic lines, show a delay distributed along the 
entire length of spatial coordinate. This time delay is usually 
accompanied by disturbances introduced to the transmitted 
signal. Processes of this type are often described by partial 
differential equations. 

Distributed time delays constitute a particular case of 
integral time delays. Such problems concerning integral time 
delays have not been investigated sufficiently well till now. 
Consequently, the Author solved an abstract optimal bound-
ary control problem for hyperbolic systems with boundary 
conditions involving integral time lags. 
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Streszczenie: Zaprezentowano ekstremalne problemy dla systemów hiperbolicznych z całkowymi 
opóźnieniami czasowymi. Rozwiązano problem optymalnego sterowania brzegowego dla 
systemów hiperbolicznych drugiego rzędu, w których całkowe opóźnienia czasowe występują 
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